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Historically, the synthesis of single subject design has employed visual inspection 
to yield significance of results. However, current research is supporting different 
techniques that will facilitate the interpretation of these intervention outcomes. 
These methods can provide more reliable data than employing visual inspection in 
isolation. This article compares the different techniques, compares the benefits of 
utilizing these techniques in addition to visual inspection, the limitations of each 
technique being reviewed, and evidence for combining traditional statistical 
measures with visual inspection.  
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Single subject research is an 
experimental design that strives to record 
relationships between independent and 
dependent variables (Gast, 2010; Kennedy, 
2005). Each participant serves as both the 
control and the experimental condition by 
using either reversal or multiple-baseline 
designs (Horner, Carr, Halle, McGee, 
Odom, & Wolery, 2005). It is a popular 
design used in a wide variety of settings; 
however, it is primarily applied in 
educational research. Traditionally, visual 
inspection has been used to interpret and 
understand results (Horner, et al., 2005; 
Park, Marascuilo, & Gaylord-Ross, 1990; 
Parker, Hagan-Burke, & Vannest, 2007). 
Visual inspection involves interpreting 
performance based on visual interfaces, 
such as line graphs, by noting level and 
slope changes, and differences between 
baseline and intervention data (Scruggs, 
Mastropieri, & Regan, 2006). Given the 
high subjectivity of visual inspection, 
using other statistical measures would add 

more objectivity when interpreting results 
(Park et al., 1990; Scruggs et al., 1987).  

A variety of methods for 
interpreting the results of single subject 
research have emerged in the last two 
decades. Nonoverlap methods can provide 
more objective analysis of data within 
single subject research (Alresheed, & 
Shipman, 2012; Mastropieri & Scruggs, 
2013). 
Visual Inspection 

Visual inspection has been the most 
common method of analysis for evaluating 
the effect of an intervention in single-
subject designs (e.g., Alberto & Troutman, 
2009; Bengali & Ottenbacher, 1998; 
Mastropieri & Scruggs, 1986).  This has 
been true even though visual inspection 
reliability has often been questioned (Gast, 
2010; Kazdin, 2011; Park et al., 1990).  
Further, Park at al. (1990) found that inter 
rater reliability for visual inspection is 
weak and recommend using statistical 
procedures in addition to visual inspection.  

Vol. 2, No. 1   May, 2013   ISSN 2167-3454 



THE JOURNAL OF SPECIAL EDUCATION APPRENTICESHIP  2 
 

 

Given, decisions made by looking 
at a graph can be subjective and 
inconsistent; this has caused a problem 
within single-subject research for a long 
time.  However, visual analyses should not 
be abandoned.  As Franklin, Gorman, 
Beasely, and Allison (1996) point out, 
visual analyses of single-subject data are 
necessary tools.  Interpretation of 
treatment effect requires both, visual 
analysis and statistical analysis (Robey, 
Schultz, Crawford, & Sinner, 1999).  Most 
researchers using single case designs still 
base their inferences on visual analysis, 
but several quantitative methods have been 
proposed.  Each has flaws, but some 
methods are likely to be more useful than 
others (Kratochwill et al., 2010). The fact 
that limitations can be identified in any 
quantitative research method for 
synthesizing single-subject research should 
not be taken as evidence that subjective, 
qualitative reviews themselves are without 
flaws (Scruggs & Mastropieri, 2013). 
While researchers are still developing 
methods (Campbell & Herzinger, 2010), a 
lack of consensus regarding the most 
appropriate metric remains (Maggin, 
O’Keeffe, & Johnson, 2011).  Two types 
of strategies have been proposed for 
assessing the magnitude of effect in single-
subject research: regression and non-
regression approaches.  Non-regression 
models include simpler nonoverlap 
methods (Parker, Vannest, & Davis, 2011).   

The number of nonoverlap methods 
for SCR has increased considerably over 
the past decade, and these methods can be 
easily confused.  Some of these methods 
are very similar and some are closely 
related to other well-known statistical 
summaries.  According to Campbell 
(2013), the introduction of PND (a 
nonoverlap method) was a “first wave” of 
SCD meta-analytic methods that was 
followed by a “second wave” of improved 
methods such as IRD and PAND. The 
“third wave” most likely will take the 
shape of more sophisticated linear 
modeling techniques, such as hierarchical 

linear modeling (HLM). All nonoverlap 
methods share the benefit of blending well 
with visual analysis of graphed data.  In 
addition, all nonoverlap techniques are 
easy to use.  They all can be calculated 
with a pencil from a data plot.  Some 
appear more complex than others but after 
initial practice prove to be user friendly for 
consumers in schools and clinics (Parker et 
al., 2011). The purpose of the following 
research questions were addressed: 

1. How do we synthesize single-
subject research? 

2. What are the benefits of each 
method? 

3. What are the limitations of each 
method? 

4. Are there benefits of combining 
statistical methods with visual 
inspection? 
 

Method 
 Two researchers independently 
reviewed Sage Journal Online, Science 
Direct, SpringerLink, Taylor & Francis, 
Eric, Education Journals-ProQuest, 
Academic Search Complete, Education 
Research Complete, PsychINFO, and 
Wiley Online Library databases. Search 
terms included were: (a) single subject 
research, (b) evidence-based practices, (c) 
meta-analysis, (d) quantitative synthesis, 
(e) synthesis of single-subject research, (f) 
PND, (g) PAND, (h) PEM, (i) PEM-T, (j) 
MBLR, (k) PZD, (l) IRD, (m) PDO, (n) 
NAP, and (o) PNCD. The articles had to 
be published in a peer-reviewed journal. 
After the search, ten methods to synthesize 
single-subject research were found. The 
authors employed fictional data to create 
14 graphs to illustrate the process of 
calculation of each method. 
 
Results 
Percentage of Non-overlapping Data 
(PND) 

Scruggs, Mastropieri, and Casto 
(1987) used the percentage of non-
overlapping data (PND) to calculate the 
effect sizes of single-subject research.  
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PND is the oldest method created for 
synthesizing single-subject studies. 
Although research has shown that PND 
has some empirical limitations, this 
estimator is one of the most commonly 
reported effect size for the quantitative 
synthesis of single-subject research 
(Maggin, Briesch, & Chafouleas, 2013) It 
is also the best known overlap method.  
According to Scruggs et al. (1987), a very 
important criterion to decide whether a 
treatment is effective is the percentage of 
overlapping data between treatment and 
baseline.  If performance during an 
intervention phase does not overlap with 

performance during the baseline phase the 
treatment is considered effective.  PND 
can easily be calculated in the great 
majority of cases, and provides a good 
measure of treatment effectiveness 
(Kazdin, 1978).  PND is calculated by 
counting the number of treatment data 
points that exceeds the highest baseline 
data point and dividing this number by the 
total number of data points in the treatment 
phase.  In mathematical language, the 
formula is the following: 

 
 

 
 
PND =                                                                                                                          X 100 

 
 
 
 
PND scores range from 0 to 100%.  

A PND of less than 50 reflects unreliable 
treatment.  A PND of 50-70% reflects 
questionable effectiveness.  A PND of 70-
90% reflects a fairly effective treatment.  

Finally, a PND of more than 90% reflects 
a highly effective treatment (Wendt, 
2007).  See figure 2 that shows an example 
of PND calculation.   

 
 
 
  
 
 
 
  
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

PND, however, has some 
weaknesses.  According to Allison and 
Gorman (1993), PND might not show 
effects in at least three situations.   Figures 

2, 3, and 4 from show examples of these 
three situations (Allison & Gorman, 1993). 

 

Figure 2.  Example of PND Calculation 
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0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Baseline Treatment
N = 10 N = 12 

91%PND = 8 / 12 = 66% 

Number of intervention data exceeding the highest baseline data point 
 

Total number of data points in the intervention phase 

Figure 1.  Formula for PND Calculation 
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1. When outliers are present in the 
baseline phase.  Outliers can distort 
the magnitude of effect estimates 
provided by PND (Campbell, 2013; 
Manolov & Solanas, 2009).  See 
figure 3 that indicates a situation in 

which the treatment has a clear 
positive effect but, because of the 
presence of an outlier in the 
baseline phase, the PND returns a 
value of zero, indicating no effect. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. When the treatment has a 
detrimental effect.  See figure 4 
that indicates a situation in which 
the treatment clearly has a 
detrimental effect (note that the 
goal of treatment was to increase 

the behavior) but, because of the 
presence of an outlier in the 
treatment phase, the PND returns a 
value of 10 indicating a small 
positive effect. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. When trend is present in the data.  
See figure 5 that indicates a 
situation in which the treatment has 
no effect but merely allows a pre-
existing trend to continue.   

However, the PND value is 100 
indicating the maximum possible 
effect. 

 
 
 
 

Figure 3. Presence of an Outlier in PND Calculation 
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Figure 4. Detrimental Effect Not Shown in PND 
Calculation 
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In addition, PND shows changes in 

level but ignores changes in slope.  Figure 
6 shows a situation in which the treatment 
clearly reverses a downward trend but the 

PND shows a value of zero indicating no 
effect (Allison & Gorman, 1993). 

 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
Four limitations of PND have been 

identified by Parker, Hagan-Burke, and 
Vannest (2007).  First, PND is neither an 
effect size nor related to an accepted effect 
size, so it needs its own interpretation 
guidelines.  Second, PND has unknown 
reliability, as it lacks a known sampling 
distribution.  The third weakness is that 
PND ignores all baseline data except for 
one data point, which because of its 
extremity, is likely the most unreliable.  
The fourth limitation is that PND lacks 
sensitivity or discrimination ability, as it 
nears 100%, for very successful 
interventions. 
Percentage of all Non-overlapping Data 
(PAND) 

Parker, Hagan-Burke, and Vannest  
(2007) recently offered a variation on 
PND, the Percentage of All Non-
Overlapping Data (PAND).  With this 
approach, the total number of data points 
that do not overlap between baseline and 
intervention phases is identified. 

Additionally, Park et al. (2007) 
indicate overlapping data points are the 
minimum number of points that would 
have to be transferred across phases for 
complete data separation. PAND is 
calculated by identifying the number of 
overlapping data points and dividing this 
number by the total number of points.  The 
final number is subtracted from 100.  In 

Figure 5. Pre-Existing Trend in PND Calculation 
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Figure 6.  Downward Trend Reversal in PND 
Calculation 
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mathematical language, the formula is the 
following: 

 

 
 
 
PAND =   100 -                                                                                                                                  
 
 
 
 
 See figure 8 that shows an example 
of PAND calculation. 

 

 
 
 
 

 
 

 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Like PND, PAND reflects non-
overlap data between baseline and 
treatment phases but they are different in 
important ways.  PAND uses all data from 
both phases, avoiding the PND focus on 
one unreliable data point (Parker et al., 
2007).  PAND can be translated to 
Pearson’s Phi and Phi2, to determine effect 
size (Wendt, 2009).  Also, Phi2 can be 
transformed to Cohen’s d, a recognized 
effect size in another metric (Parker et al., 
2007).  The data requirements for PAND 
are minimal, mainly, a minimum of 20 
data points.  Two limitations cited for 
PND are not solved by PAND.  The first is 
insensitivity at the upper end of the scale.  
When there is no data overlap between 
phases, both PND and PAND give a 100% 
score, regardless of the distance between 

the two data clusters.  PAND’s second 
limitation is that it doesn’t control positive 
baseline trend.  Like PND, it does not try 
to adjust for prior rate of improvement.  
Before identifying a causal link between 
intervention and behavior, one must 
consider any positive baseline trend 
(Parker, Cryer, & Byrns, 2006).  A large 
effect size alone does not imply that 
change was due to the intervention. 
Percentage of Data Exceeding the 
Median (PEM) 

A third non-parametric statistical 
method is percentage of data exceeding the 
median (PEM).  The null hypothesis of the 
PEM approach is that if the treatment has 
no effect, the data points in the treatment 
phase will concentrate around the middle 
line.  The data points have 50% of chance 

Number of overlapping data points 
 
      Total number of data points 

Figure 8.  Example of PAND Calculation 

Overlap = 2/22 = 9% 
PAND = 100 – 9 = 
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Figure 7.  Formula for PAND Calculation 
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of being above and 50% chance of being 
below the median of the previous baseline 
phase (Ma, 2006).  PEM identifies the 
percentage of data points exceeding the 
median of the baseline phase (Ma, 2006).  
PEM is calculated by first locating the 
median point or point between the two 
median points in the baseline data.  The 
median is the middle in the distribution 
(Cohen & Swerdlik, 2009).  Then, a line 
will be drawn from the median into the 
treatment phase.  Finally, the number of 

data points above the median line will be 
counted.  If the behavior is expected to 
increase, the points above the line will be 
counted.  If the behavior is expected to 
decrease, the points below the line will be 
counted (Wendt, 2009).  The total number 
will be divided by the total of data points 
in the treatment phase.  See figure 9 that 
shows an example of PEM calculation. 
 
 

 
 
 
 
 
 
                       
 
 

 
 
 

 
 
 
 
 
 

PEM scores range from 0 to 1.  A 
PEM of less than .7 reflects treatment that 
is not effective.  A PEM of .7 to .9 reflects 
moderate effectiveness.  A PEM of .9 to 1 
reflects a highly effective treatment 
(Wendt, 2007).  A critical advantage of 
PEM over PND is the fact that PEM 
reflects an effect size in the presence of 
floor or ceiling baseline data points.  PEM 
has also some important limitations: It is 
insensitive to magnitude of data points 
above the median and it does not consider 
variability and trend. 
Percentage of Data Exceeding the 
Median Trend (PEM-T) 

Percentage of data exceeding a 
median trend (PEM-T) is another 

nonparametric method.  PEM-T is the only 
overlap method considering the trend in 
the data of the baseline.  PEM-T is 
calculated by using first the split-middle 
technique (White & Haring, 1980), a 
common approach to determine trend in 
SSD data.  After drawing a trend line in 
the baseline phase using split-middle 
technique, this line is extended to the 
treatment phase.  The data points in the 
treatment phase above the trend line are 
counted and the percentage of non-overlap 
is calculated.  See figure 10 that shows an 
example of PEM-T calculation. 
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Figure 9.  Example of PEM Calculation 

PEM = 12/12 = 100% 
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Mean Baseline Difference (MBLR) 

Mean baseline reduction (MBLR) 
or mean baseline difference (MBD), also 
called percentage reduction, is another 
frequently used non-parametric statistical 
method.   It measures the average 
reduction or increase of behavior from 
baseline (O’Brien & Repp, 1990).  When 

the goal of the treatment is to reduce 
behavior, MBLR is calculated by 
subtracting the mean of the treatment 
points from the mean of the baseline 
points, then dividing by the mean of the 
baseline points and multiplying by 100 
(Campbell, 2003). 

 
 
 
 
MBLR  =                                                                              X 100 
 
 
 
 
 
When the goal of the treatment is to 

improve behavior, MBLR is calculated by 
subtracting the mean of the baseline points 
from the mean of the treatment points, then 

dividing by the mean of the baseline points 
and multiplying by 100 (Campbell, 2003). 

 

 
 
MBLR  =                                                                             X 100 

 
 
 
 
A variation of this approach is 

using the same formula including only the 
last three points in the treatment and the 

last three points in the baseline.  See figure 
13 that shows an example of MBLR 
calculation. 

Figure 10.  Example of PEM-T calculation 

PEM-T Method
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Figure 11.  Formula for MBLR Calculation (Behavior Reduction) 

Figure 12.  Formula for MBLR Calculation (Behavior Improvement) 
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Percentage of Zero Data (PZD) 

Percentage of zero data (PZD) is 
the degree to which behavior is eliminated 
in treatment (Harvey, Boer, Meyer, & 
Evans, 2009) so it fits only certain scales 
and goals (Parker, Vannest, & Davis, 
2011).  It is easy to calculate but can be 
distorted if treatment is terminated 
immediately after zero data point occurs 
(Harvey et al., 2009).  Because it 
calculates the degree to which intervention 
completely suppresses targeted behavior 
(Scotti, Evans, Meyer, & Walker, 1991), 
future quantitative reviews that examine 
treatments designed to eliminate problem 
behaviors in the context of a single-subject 
design should include PND and PZD 
metrics.  PND and PZD scores have been 

found to be non-redundant indicators of 
treatment outcome (Campbell, 2003).  
However, when reduction of symptoms 
(vs. suppression of symptoms) is the focus 
of intervention, PZD will not constitute an 
appropriate measure to summarize 
treatment effects (Campbell, 2004).  PZD 
is calculated by locating the first data point 
in the treatment phase that reaches zero 
and calculating the per cent of data points 
recorded in the treatment phase, including 
the first zero, that remain at zero (Scotti, et 
al., 1991).  The PZD score is considered a 
more stringent indicator of treatment 
efficacy as it requires target behaviors to 
reach and stay at zero levels throughout 
treatment (Campbell, 2004). 

 
 
 
 
PZD  =                                                                                               X 100 
 
 
 
 

 
Just like PND, PZD statistics are 

overly sensitive to outliers and trend 
(Allison & Gorman, 1993).  See figure 15 
that shows an example of PZD calculation. 

 
 
 
 

Number of 0 treatment data points after first 0 
   
       Number of treatment data points after first 0 

Figure 13.  Example of MBLR calculation 
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Figure 14.  Formula for PZD Calculation 
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PZD scores range from 0 to 100%, 

with higher scores indicating more 
effective treatments (Shogren, Fagella-
Luby, Bae, & Wehmeyer, 2004).  A PZD 
score of less than 18% reflects an 
ineffective treatment.  A score of 18% to 
54% reflects a treatment of questionable 
effectiveness.  A score between 55% and 
80% reflects fair effectiveness.  Finally, a 
score higher than 80% reflects a highly 
effective treatment (Scotti et al., 1991). 
Improvement Rate Difference (IRD) 

Improvement rate difference (IRD) 
is a measure -closely related to PAND -
that expresses the difference in successful 
performance between baseline and 
intervention phases.  IRD has a solid 
record of use in evidence-based medicine, 
under the name of risk reduction or risk 
difference (Parker, Vannest, & Brown, 
2009). 

According to Parker et al. (2009), 
IRD’s advantages include (a) accessible 

interpretation as the difference in 
improvement rates between baseline and 
treatment phases; (b) simple hand-
calculation, easily explained to most 
educators; (c) compatibility with PND 
from visual analysis; (d) known sampling 
distribution, so confidence intervals are 
available; (e) proven track record (as risk 
difference) in hundreds of evidence-based 
medical research studies; (f) few data 
distribution assumptions; and (g) 
application to complex single-case 
research designs and multiple data series. 

To calculate IRD, two 
improvement rates (IRs) must be 
calculated first  (Cochrane Collaboration, 
2006; Sackett, Richardson, Rosenberg, & 
Haynes, 1997).  The IR for each phase is 
defined as the number of “improved data 
points” divided by the total data points in 
that phase: 

 

 
 
IR  = 

 
 
 

Figure 15.  Example of PZD calculation 
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Figure 16.  Formula for IR Calculation 
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An improved data point in baseline 
is defined as one that ties or exceeds any 
data point in the treatment phase.  An 
improved data point in the treatment phase 
is defined as any which exceeds all data 
points in the baseline phase.  “Exceeds” 
refers to higher levels of behaviors we 
wish to increase (e.g., homework 
completion) and to lower levels of 
behaviors we wish to decrease (e.g., 

tantrums). Improved data points are 
identified visually (Parker et al., 2009).   

IRD is then calculated as the 
difference of the improvement rate of the 
treatment phase minus the improvement 
rate of the baseline phase: IRD  =  IRT  - 
IRB 

See figure 17 that shows an 
example of IRD calculation. 

 
 

 
 
 
                          

 
 

 
 

 
 
 
 

 
 
 
 

 
 
IRD scores range from 0 to 100% 

or 1.00.  A negative IRD score is possible, 
indicating deterioration below baseline 
levels (Parker et al., 2009).  From 
comparing visual ratings with IRD, Parker 
et al. (2009) estimated tentative 
benchmarks.  Very small and questionable 
effects scored about .50 and below.  
Moderate-size effects had IRD scores of 
around .50 to .70.  Effects rated as large 
and very large generally received IRD 
scores of .70 or .75 and higher.   

When a baseline trend is 
prominent, a calculated effect size cannot 
fairly represent treatment effectiveness.  In 
those cases, parametric (Allison & 
Gorman, 1993) or nonparametric (White & 
Haring, 1980) techniques can control the 
baseline trend.  After applying a trend-
compensating formula, IRD can safely be 

used without modification (Parker et al., 
2009). 
Pairwise Data Overlap (PDO) 

Pairwise Data Overlap (PDO) 
calculates the overlap of all possible paired 
data comparisons between baseline and 
intervention phases (Parker & Vannest, 
2007).  To calculate PDO, the following 
steps must be followed (Wolery, Busick, 
Reichow, & Barton, 2008):  
Compare baseline data point with all 
intervention data points 
For each data point in baseline, count the 
number of nonoverlapping (nol) data 
points in treatment phase. 

1. Sum all counts for all data points in 
Step 2. 

2. Count the number of data points in 
the baseline. 

3. Count the number of data points in 
the treatment phase. 

Figure 17.  Example of IRD calculation 
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IRD = IRT – IRB = 0.6 - 0.2 = 0.4 = 40% 
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4. Multiply the two counts (Steps 4 
and 5) to determine the total 
number of  

5. pairwise comparisons.  

6. Divide the sum from Step 3 by the 
product from Step 4 
 
 

 
 
 
PDO  =                                                                                                 = 92% 
 
 
 
 
 
 
 
See figure 19 that shows an example of PDO calculation. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

PDO has advantages and 
limitations.  PDO produces more reliable 
results with single subject designs than 
other non-parametric indices, and relates 
closely to established effect sizes (e.g., 
Pearson r, Kruskal-Wallis W).  However, 
it takes slightly longer to calculate since it 
requires that individual data point results 
be written and added, making calculation 
laborious for long and crowded data series 
(Wendt, 2009). 
Non-overlap of All Pairs (NAP) 

NAP was developed mainly to 
improve upon existing SCR overlap-based 
methods: PND, PAND, and PEM.  

Nonoverlap of all pairs (NAP) is 
interpreted as the percentage of all 
pairwise comparisons across baseline and 
treatment phase, which show improvement 
across phases or, more simply, the 
percentage of data, which improve across 
phases (Parker, Vannest, & Davis, 2011).  
A simpler wording is the per cent of non-
overlapping data between baseline and 
treatment phases.  The concept of score 
overlap is identical to that used by visual 
analysts of SCR graphs and is the same as 
is calculated in the other overlap indices, 
PAND, PEM and PND (Parker & Vannest, 
2009).  NAP is a “complete” nonoverlap 

                  9+9+9+9+9+4+7+9+9+9 
   
                                 10 X 9 

Figure 19.  Example of PDO calculation 
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PDO = 9+9+9+9+9+4+7+9+9+9 / 90 
PDO = 83 / 90 = 92% 

Figure 18.  Formula for PDO Calculation 
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index as it individually compares all 
baseline and treatment phase data points.  
(Parker, Vannest, & Davis, 2011).   

Although easily calculated by 
computer software, hand calculation 
requires some practice.  The NAP hand-
calculation method compares each baseline 
phase data point with each treatment phase 
data point.  Parker and Vannest (2009) 
give a clear explanation of the hand-
calculation process.  First, it is necessary 
to calculate the number of Pos following 
these steps: 

1. First, the total of paired 
comparisons (Pairs) across phases 

is calculated as number of points in 
baseline x number of points in 
treatment phase = 6 x 7 = 42.   

2. Next, the “overlap zone” between 
phases is identified and within that 
zone only pairs that show decline 
(Neg) and ties (Ties) are counted. 

3. These (Neg, Ties) are subtracted 
from number of Pairs to get the 
number of Pos. 
Once the number of Pos is 

obtained, NAP is calculated using the 
following formula: 
 

 
 
 

NAP  =   
 

 
 
 
 
See figure 21 that shows an example of NAP calculation. 
 

 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

Pos  +  (.5  x  no.  of Ties) 
   
        No.  of Pairs 

NAP Method
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Baseline Treatment
N = 10 N = 12 

Figure 21.  Example of NAP calculation 

Pairs = 10 x 12 = 120 
Pos = 120 - 3 = 117 
NAP = 117 + .5 x 1 / 120 = 117.5 / 120 = .98 = 98% 
Rescaled: 1 - (.98 / .5) = .96 = 96% 

Figure 20.  Formula for NAP Calculation 
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NAP is scaled from 50% to 100%, 

where 50% is a chance-level result.  To 
rescale NAP to a 0% to 100% scale, this 
formula must be used: NAP 0-100 = 1 – 
(NAP50-100 / .5) (Parker, Vannest, & 
Davis, 2011).  NAP also is obtained 
directly as the AUC per cent from a ROC 
analysis.  NAP also can be calculated from 
intermediate output of the Wilcoxon Rank-
Sum Test, usually located in statistical 
packages within “Two Sample t-Test” or 
“Non-Parametric Test” modules.  Parker 
and Vannest (2009) offer a tentative NAP 
range based on visual judgements of 200 
data sets: weak effects: 0–.65; medium 
effects: .66–.92; large or strong effects: 
.93–1.0.  Transforming NAP to a zero 
chance level gives these corresponding 
ranges: weak effects: 0–.31; medium 
effects: .32–.84; large or strong effects: 
.85–1.0. 

NAP should offer five comparative 
advantages: First, NAP should 
discriminate better among results from a 
large group of published studies.  Earlier 
research indicated less than optimal 
discriminability by the other three 
nonoverlap indices (PND, PAND, PEM).  
A second advantage is less human error in 
calculations than the other three hand-
calculated indices.  On uncrowded graphs, 
PND, PAND and PEM are calculated with 
few errors, but not so on longer, more 
compacted graphs.  A third advantage 
sought from NAP was stronger validation 
by R2, the leading effect size in 
publication.  Since NAP entails more data 
comparisons than other nonoverlap 
indices, it should relate more closely to 
R2, which makes fullest use of data.  The 
fourth anticipated advantage of NAP was 
stronger validation by visual judgments.  
The reason for that expectation was that 
visual analysis relies on multiple and 
complex judgments about the data, which 
should be difficult to capture with simpler 
indices such as PEM and PND.  NAP is 
not a test on means or medians, but rather 

on location of the entire score distribution, 
and is not limited to a particular 
hypothesized distribution shape (Parker & 
Vannest, 2009). 

 
Percentage of Non-overlapping 
Corrected Data (PNCD) 

The last non-parametric statistical 
method, PNCD, is a modification of PND.  
The data-correction procedure focuses on 
removing the baseline trend from data 
prior to estimating the change produced in 
the behavior as a result of intervention.  
Unstable baselines have been regarded as 
undesirable, but they can be common in 
applied settings in which the introduction 
of the treatment is subjected to factors that 
cannot always be controlled by the 
practitioners (Manolov & Solanas, 2009).  
Although a professional might be reluctant 
to initiate the intervention when there is 
trend in data, treatment administration may 
be imposed by institutional time schedules, 
a client’s availability, and so on.  In such a 
case, some kind of statistical control is 
advisable (Kazdin, 1978). 

As mentioned previously in this 
chapter, PND is the most frequently 
applied overlap methods for quantifying 
treatment effectiveness in single-case 
studies and also in meta-analyses.  Despite 
its attractiveness to psychologists, PND is 
not trouble-free (Allison & Gorman, 
1994).  Therefore, the main objective of 
the developers of PNCD was to propose a 
modification of the PND procedure that 
was intended to overcome some of PND’s 
limitations (Manolov & Solanas, 2009).  A 
data-correction procedure is to be 
implemented prior to applying the PND in 
order to eliminate from the data a possible 
pre-existing trend that was not related to 
the introduction of the intervention.  Since 
the proposal is basically a modification of 
PND—adding an initial data-correction 
step—the procedure is called “percentage 
of nonoverlapping corrected data” 
(Manolov & Solanas, 2009).  Manolov and 
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Solanas (2009) describe the following 
procedure to calculate PNCD: 

1. Difference the baseline data points 
and obtain the differenced series.  
This means subtracting the 
previous data point from each data 
point.  In the example, the 
differenced series has the following 
data points:  
 0 (4 – 4 ), 1 (5 – 4), -2 (3 – 
5), 4 (7 – 3) 

2. Compute the mean of the previous 
series.  The average of 0, 1, -2, and 
4 is 0.75. 

3. Compute the trend-correction 
factor for each data point: the mean 
of the differenced series, multiplied 
by Tt (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).  
In the example, the correction 
factor values are: 

 .75 x 1, .75  x  2, .  .  .  , .75  
x  10. 

4. Perform the data correction 
subtracting the corresponding 
correction factor from each original 
data point.  After the correction 
phase, A consists of: 
(.75 x 1),  2.5 (.75 x 2), 2.75 (.75 x 
3), 0 (.75 x 4), and 3.25 (.75 x 5).   
After the correction phase, B 
consists of:  
2.5 (.75 x 6), 2.75 (.75 x 7), 3 (.75 
x 8), .25 (.75 x 9), and 1.5 (.75 x 
10). 

5. Apply PND: None of the phase B 
data points is greater than the phase 
A highest value (3.25) and, 
therefore, PNCD = 0%. 

See figure 22 that shows the example 
of PNCD calculation. 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
The first four steps are expected to 

remove any trend from the data and thus to 
avoid inflation in the percentages obtained 
by means of PND.  Trend is not estimated 
from the whole data series, since a change 
in level between the phases may be 
confounded for trend, and such a 
correction may remove the intervention 
effect. 

 
Discussion 

The previously reviewed ten non-
regression measures have shown to be 

concrete and objective. These methods are 
able to accurately provide a measure of 
effect that is more objective than visual 
inspection alone. Using statistical analysis 
to interpret results offers more concrete 
and objective interpretation; however, each 
method has its unique limitations that need 
to be taken into consideration before 
applying it to a specific study. A study 
conducted by Wolery, Busick, Reichow, & 
Barton, (2009) showed weak results when 
solely using an overlap method. One 
method may be more appropriate for one 

PNCD Method
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1 2 3 4 5 6 7 8 9 10

Baseline Treatment
N = 5 N = 5 

Figure 22.  Example of PNCD calculation 
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study than another, depending on data 
gathered and desired outcomes. However, 
there is consensus regarding the most 
appropriate method for estimating the 
magnitude of treatment effect for single-
subject research. Thus, the reporting of 
multiple metrics is highly recommended to 
determine whether consistent results were 
observed (Maggin, Briesch, & Chafouleas, 
2013). While all of these non-regression 
measures have their limitations, evidence 
has also been provided to support 
combining statistical analysis with visual 
inspection. A study conducted by Park, 
Marascuilo, and Gaylord-Ross (1990) 
showed that inter rater reliability for only 
visual inspection was low but, when 
combining visual inspection and statistical 
analysis, inter-rater reliability 
strengthened.  Future research in 
combining these two analyses together is 
warranted.  
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